MATH 54-HINTS TO HOMEWORK 9

PEYAM TABRIZIAN

Here are a couple of hints to Homework 9! Enjoy! :)

Section 7.1: Diagonalization of Symmetric matrices

7.1.7, 7.1.11. Remember orthogonal matrices have orthonormal columns!
7.1.13, 7.1.17. 7.1.22. First diagonalize the matrix as usual, and then apply Gram-Schmidt to each eigenspace!
7.1.32. Since P is orthogonal and square, $P^{-1}=P^{T}$. Solve for R and then calculate R^{T}
7.1.33, 7.1.34. Look at example 4 on page 393.

SECTION 7.2: Quadratic forms

7.2.5. Remember to evenly distribute the cross-product terms! For example, the matrix of the quadratic form $x_{1}^{2}+6 x_{1} x_{2}+2 x_{2}^{2}$ is:

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 2
\end{array}\right]
$$

7.2.9. Find the matrix A of the quadratic form, then diagonalize A. The matrix P of eigenvectors is the matrix you're looking for. Finally, to write the new quadratic form, use the fact that $\mathbf{x}=P \mathbf{y}$ and substitute each variable x_{1}, x_{2} etc. with the corresponding linear combination of y_{1} and y_{2}.
7.2.19. You don't need any linear algebra for this! Notice the following:

$$
5 x_{1}^{2}+8 x_{2}^{2}=5 x_{1}^{2}+5 x_{2}^{2}+3 x_{2}^{2}=5\left(x_{1}^{2}+x_{2}^{2}\right)+3 x_{2}^{2}=5+3 x_{2}^{2}
$$

Now the largest value of x_{2} is 1 , hence the largest value of the quadratic form is $5+3=8$

[^0]NOTE: In case you're stuck with the more standard differential equations questions (hom equations, undetermined coeffs, variation of parameters, etc.), make sure to look at my 'Differential equations' - Handout. That should help clarify some things!

Section 4.1: Introduction: The mass-Spring oscillator

NOTE: If you're running out of time, SKIP this section! I'll let you know if a problem from that section is graded!
4.1.1. Plug in $y(t)=\sin (\omega t)$ into the equation.
4.1.3. To find the maximum value, do the standard calculus optimization trick! Calculate $y^{\prime}(t)$, set it equal to 0 , and solve for t.
4.1.5. The limit is 0 by the squeeze theorem
4.1.8, 4.1.9. This problem just asks you to use the method of undetermined coefficients (section 4.4)
4.1.10. Wow, what a long problem! :O You can definitely SKIP this if you want! It's just a matter of plugging in solutions and using the method of undetermined coefficients.

SECTION 4.2: Homogeneous Linear equations: The general solution
4.2.26. This problem looks scary, but it's not that scary! In each question, try to solve for c_{1} and c_{2}. In (a), you'll be able to do that, in (b), there will be no solutions, and in (c) there will be infinitely many solutions!
4.2.30. Here's the trick I showed in section. Consider the Wronskian:

$$
W(t)=\operatorname{det}\left[\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right]
$$

You DON'T have to calculate this determinant explicitly. Just pick a point t_{0} between 0 and $1\left(e^{-\pi}\right)$ and calculate $W\left(t_{0}\right)$. If $W\left(t_{0}\right) \neq 0$, then your solutions are linearly independent. But if $W\left(t_{0}\right)=0$, then you can't always conclude that the solutions are linearly dependent (I'll talk this some day), so usually that means pick another point that works.

SECTION 4.4: THE METHOD OF UNDETERMINED COEFFICIENTS

4.4.1. No! (in our problems, we always assumed the exponent of t to be apositive integer!)
4.4.3. Yes! $3^{t}=e^{\ln (3) t}$, remember that $\ln (3)$ is just a number.
4.4.5. No!
4.4.9. Guess $y_{p}(t)=A$
4.4.11. $y_{p}(t)=A e^{2 t}$
4.4.13. $y_{p}(t)=A \cos (3 t)+B \sin (3 t)$
4.4.15. $y_{p}(t)=(A x+B) e^{x}$
4.4.17. $y_{p}(t)=A t^{2} e^{t}$ (the double root coincides with the right-hand-side!)

SECTION 4.5: THE SUPERPOSITION PRINCIPLE

4.5.9. Yes

4.5.11. No (because of the $\frac{1}{t}$ term)
4.5.13. Actually yes! Because $\sin ^{2}(t)=\frac{1-\cos (2 t)}{2}$

SECTION 4.6: VARIATION OF PARAMETERS

Note: You are allowed to use your calculator of Wolfram alpha to evaluate the given integrals! This is Math 54 after all, and not Math 1B :)

The easiest way to do the problems in this section is to look at my differential equations handout!

The formula is:
Let $y_{1}(t)$ and $y_{2}(t)$ be the solutions to the homogeneous equation, and suppose $y_{p}(t)=$ $v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$. Let:

$$
\widetilde{W}(t)=\left[\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right]
$$

And solve:

$$
\widetilde{W}(t)\left[\begin{array}{c}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
f(t)
\end{array}\right]
$$

where $f(t)$ is the inhomogeneous term.
4.6.20. Don't freak out! Here we have $y_{1}(t)=\cos (t)$ and $y_{2}(t)=\sin (t)$. Just use the variation of parameters formula with f instead of the inhomogeneous term. At some point, you should get:

$$
v_{1}^{\prime}(t)=-\sin (t) f(t)
$$

and

$$
v_{2}^{\prime}(t)=\cos (t) f(t)
$$

Then, to get v_{1} and v_{2}, just integrate from 0 to t :

$$
\begin{gathered}
v_{1}(t)=\int_{0}^{t}-\sin (s) f(s) d s \\
v_{2}(t)=\int_{0}^{t} \cos (s) f(s) d s
\end{gathered}
$$

Finally, use the fact that $y_{p}(t)=v_{1}(t) \cos (t)+v_{2}(t) \sin (t)$, and use the formula $\sin (t) \cos (s)-\sin (s) \cos (t)$.

[^0]: Date: Friday, November 4th, 2011.

